1,775 research outputs found

    Ultimate approximations in nonmonotonic knowledge representation systems

    Full text link
    We study fixpoints of operators on lattices. To this end we introduce the notion of an approximation of an operator. We order approximations by means of a precision ordering. We show that each lattice operator O has a unique most precise or ultimate approximation. We demonstrate that fixpoints of this ultimate approximation provide useful insights into fixpoints of the operator O. We apply our theory to logic programming and introduce the ultimate Kripke-Kleene, well-founded and stable semantics. We show that the ultimate Kripke-Kleene and well-founded semantics are more precise then their standard counterparts We argue that ultimate semantics for logic programming have attractive epistemological properties and that, while in general they are computationally more complex than the standard semantics, for many classes of theories, their complexity is no worse.Comment: This paper was published in Principles of Knowledge Representation and Reasoning, Proceedings of the Eighth International Conference (KR2002

    Normal Form Theorem for Logic Programs with Cardinality Constraints

    Get PDF
    We discuss proof schemes, a kind of context-dependent proofs for logic programs. We show usefullness of these constructs both in the context of normal logic programs and their generalizations due to Niemela and collaborators. As an application we show the following result. For every cardinality-constraint logic program P there is a logic program P´ with the same heads, but with bodies consisting of atoms and negated atoms such that P and P´ have same stable models. It is worth noting that another proof of same result can be obtained from the results by Lifschitz and collaborators

    Controlling reactivity of nanoporous catalyst materials by tuning reaction product-pore interior interactions: Statistical mechanical modeling

    Get PDF
    Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport

    System size and centrality dependence of the balance function in A + A collisions at sqrt s NN = 17.2 GeV

    Get PDF
    Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions
    corecore